Tetrahydroxystilbene Glucoside Attenuates Neuroinflammation through the Inhibition of Microglia Activation
نویسندگان
چکیده
Neuroinflammation is closely implicated in the pathogenesis of neurological diseases. The hallmark of neuroinflammation is the microglia activation. Upon activation, microglia are capable of producing various proinflammatory factors and the accumulation of these factors contribute to the neuronal damage. Therefore, inhibition of microglia-mediated neuroinflammation might hold potential therapy for neurological disorders. 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (TSG), an active component extracted from Polygonum multiflorum, is reported to be beneficial for human health with a great number of pharmacological properties including antioxidant, free radical-scavenging, anti-inflammation, antilipemia, and cardioprotective effects. Recently, TSG-mediated neuroprotective effects have been well demonstrated. However, the neuroprotective actions of TSG on microglia-induced neuroinflammation are not known. In the present study, microglia BV2 cell lines were applied to investigate the anti-neuroinflammatory effects of TSG. Results showed that TSG reduced LPS-induced microglia-derived release of proinflammatory factors such as TNFα, IL-1β, and NO. Moreover, TSG attenuated LPS-induced NADPH oxidase activation and subsequent reactive oxygen species (ROS) production. Further studies indicated that TSG inhibited LPS-induced NF-κB signaling pathway activation. Together, TSG exerted neuroprotection against microglia-mediated neuroinflammation, suggesting that TSG might present a promising benefit for neurological disorders treatment.
منابع مشابه
Tetrahydroxystilbene Glucoside Produces Neuroprotection against 6-OHDA-Induced Dopamine Neurotoxicity
Parkinson's disease (PD) was one of the most common neurodegenerative diseases with a slow and progressive loss of dopamine (DA) neurons in the midbrain substantia nigra (SN). Neuroinflammation was identified to be an important contributor to PD pathogenesis with the hallmark of microglia activation. Tetrahydroxystilbene glucoside (TSG) was the main active component extracted from Polygonum mul...
متن کاملBiological Activities of 2,3,5,4′-Tetrahydroxystilbene-2-O-β-D-Glucoside in Antiaging and Antiaging-Related Disease Treatments
2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-glucoside (THSG) is active component of the Chinese medicinal plant Polygonum multiflorum Thunb. (THSG). Pharmacological studies have demonstrated that THSG exhibits numerous biological functions in treating atherosclerosis, lipid metabolism, vascular and cardiac remodeling, vascular fibrosis, cardiac-cerebral ischemia, learning and memory disorders, neuroi...
متن کاملCaffeine attenuates lipopolysaccharide-induced neuroinflammation.
Caffeine is an antagonist at A1 and A2A adenosine receptors and epidemiological evidence suggests that caffeine consumption reduces the risk of Alzheimer's and Parkinson's diseases. Neuroinflammation plays a role in the etiology of these diseases and caffeine may provide protection through the modulation of inflammation. Adenosine has a known role in the propagation of inflammation and caffeine...
متن کاملEvidence That Erythropoietin Modulates Neuroinflammation through Differential Action on Neurons, Astrocytes, and Microglia
Neuroinflammation is a normal and healthy response to neuronal damage. However, excessive or chronic neuroinflammation exacerbates neurodegeneration after trauma and in progressive diseases such as Alzheimer's, Parkinson's, age-related macular degeneration, and glaucoma. Therefore, molecules that modulate neuroinflammation are candidates as neuroprotective agents. Erythropoietin (EPO) is a know...
متن کاملSpinal injection of docosahexaenoic acid attenuates carrageenan-induced inflammatory pain through inhibition of microglia-mediated neuroinflammation in the spinal cord.
Neuroinflammation in the spinal cord plays a critical role in the processing of inflammatory pain. Docosahexaenoic acid (DHA), a predominant omega-3 polyunsaturated fatty acid in the central nervous system, is known to modulate inflammatory responses in various neurodegenerative disorders. In this study, we investigated whether DHA could reduce inflammatory pain and inhibit neuroinflammation in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013